Archive 2 » View All » High-Performance » 2005 Ferrari F430

2005 Ferrari F430

2005 Ferrari F430 hails the arrival of a whole new generation of Ferrari V8-engined berlinettas. Every inch of the car was inspired by the engineering research carried out at Ferrari’s Gestione Sportiva F1 racing division. The result is a highly innovative design characterised by cutting-edge technologies perfected for use on a road-going car.

Two of these innovations are world firsts for production cars: the electronic differential (E-Diff) initially developed by Ferrari for its F1 single-seaters and designed to make the most of the engine’s torque to optimise traction, and the handily placed steering wheel-mounted commutator switch (better known to the Scuderia’s drivers as the manettino) which directly controls the integrated systems governing vehicle dynamics.

The F430’s light, compact 4,308 cc engine is completely new and gives the car its name. It punches out 490 hp and delivers a specific power output of 114 hp/l and 465 Nm of torque. Needless to say, performance is outstanding: acceleration from zero to 100 km/h in 4 seconds flat and a maximum speed in excess of 315 km/h.

Every area of this latest Prancing Horse car has been influenced by Formula 1. For instance, owners can order a braking system using carbon-ceramic discs which offer superior stopping power and give the driver the satisfying feeling of being in complete control of the vehicle even in the most demanding situations.

The F430’s aerodynamics are also highly innovative for a road car: its shape has been honed to generate special flows to increase downforce and improve cooling. Every last component of this new Ferrari has been perfected to deliver outstanding performance and maximum driving pleasure.

Interior and Carrozzeria Scaglietti

Interior: The F430’s interior has been redesigned for improved driver ergonomics. The instruments are housed in a new binnacle, and this design, together with the layout of the dashboard, underlines the care that has gone into grouping all the major controls in front of the driver within easy reach. In the driver’s direct line of sight are the rev counter, which features new graphics with a choice of either a red or yellow background and a new metal surround, the digital readout of the gear ratio selected (F1 version) and a multi-function display.

The same uncompromising approach to driver control was the inspiration behind mounting the starter button and manettino on the steering wheel. The wheel itself is new with the upper rim flattened to improve visibility in the straight ahead position, and the horn pushes are integrated into the inner rim where they can be easily actioned. The interior reflects the advanced technology and materials employed in the car’s construction, and can be personalised with carbon-fibre or aluminium inserts.

The cockpit is noticeably bigger and the already excellent passenger comfort is subsequently increased thanks to a slimmer central tunnel which houses the gear lever turret on the manual version and the F1 console on the paddle-shift version. There is plenty of space behind the rear seats, with a new electrically operated compartment for oddments storage and catch netting to the rear fire wall. The seats have been redesigned for greater lateral containment and the standard electric seats can be substituted by more sporting items with four-point harnesses to order (depending on market).

Carrozzeria Scaglietti: The Carrozzeria Scaglietti personalisation programme is Ferrari’s way of ensuring that its relationship with each of its clients is absolutely unique. The programme offers F430 owners a range of racing and styling features and personalised finishes so wide that the possible combinations are virtually limitless. A total of 16 bodywork colours, 12 leather colours and eight colours for the mats are available. Owners can also choose between carbon and aluminium dashboard inserts too and whether they want a yellow or red background for the rev counter. The Programme offers virtually endless freedom when it comes to creating your very own bespoke car.

The personalisation options are divided into four main areas: Racing and Track, Exteriors and Colours, Interiors and Materials, Equipment and Travel. Clients who wish to give their car a sportier flourish will be able to order Ferraris exceptional carbon-ceramic brakes and body-hugging carbon-fibre bucket seats. These may also be combined with a four-point safety harness (depending on market). Last but not least, there’s even a leather-trimmed aluminium roll bar (depending on market). Owners can also choose a colour for their car’s bodywork that is not included in the standard range or even supply their own sample. “Scuderia Ferrari” shields can be fitted to the wheelarches too and red, yellow or aluminium brake callipers.. Challenge-style wheels are also available.

The F430’s interior can be personalised in any number of ways: owners can chose between various leather trim colour combinations or opt for Daytona-style upholstery with perforated inserts. There’s even a special leather trim for the rear bench. So detailed is the programme that even the colour of the thread and the spacing of the stitching can be specified. The Travel options include an upgraded stereo system with sub-woofer, a satellite navigation system, and a Bluetooth connection for your mobile to the speakerphone system built into the radio. An exclusive luggage set, specially tailored to fit the F430, is also available.

New Engine and Technical Specification

A brand-new engine: The F430 is powered by a new 90° V8 featuring Ferrari’s traditionally uncompromising design approach with a flat-plane crank (180° between throws). This is an all-new unit that does not share any components with the 360 Modena’s engine. The improvement in terms of performance, weight and reduction of overall dimensions is the result of applying Ferrari’s wealth of F1 experience to its road cars.

Despite a 20% increase in engine displacement (from 3,586 cc to 4,308 cc), engine weight has grown minimally by just 4 kg, while performance is considerably improved across the board. Torque increases by 25% (465 Nm at 5,250 rpm, 80% of which is already available at 3,500 rpm) and power by 23% (490 hp at 8,500 rpm).

The engine is extremely compact with a cylinder spacing of just 104 mm. Similarly, Ferrari’s engineers integrated the sump and main bearings in a single casting which, along with a smaller diameter twin-plate clutch and flywheel, has reduced the engine height between the bottom of the oil sump and the crankshaft to just 130 mm (from 145 mm on the 360 Modena power unit).

In line with the latest developments in high specific output engines, there are new 4-valve cylinder heads, and the inlet tracts and valve diameters are derived directly from designs used on the F1 engines. Support from the company’s Gestione Sportiva racing side was essential in defining performance characteristics. The twin overhead camshafts per cylinder bank feature continuously variable timing on both inlet and exhaust cams, and the valve gear is driven by hydraulic tappets.

Actuation of the variable valve timing is guaranteed by a high pressure hydraulic system (20 bar), obtained by using a supplementary pump, an external accumulator and a circuit that works in parallel with the oil circuit for the hydraulic tappets. This ensures that a full timing cycle is completed in 0.1 seconds. Ferrari has dropped the mixed gear/toothed belt distribution system for a chain-driven system, thus reducing the overall length of the engine. Crankshaft, con rods and pistons are also all-new.

The dry sump lubrication system comprises a series of external pumps (thus reducing the overall height of the sump) and a circuit that has been optimised by eliminating the oil radiator and introducing a water/oil heat exchanger mounted inside the engine vee. Three scavenge pumps guarantee that excess oil is drawn out of the bottom of the cylinder block under all driving conditions, creating a strong vacuum around the crankshaft and thus reducing power loss through attrition.

The intake manifold features straight inlet tracts to the two central plenums which, in turn, have trumpets individually cast at the top of the tracts for each cylinder to ensure optimum air flow to the cylinder heads. A rotating drum – actuated pneumatically by the engine control unit – compensates for variations in the effective volume inside the two plenums to optimise the intake resonance characteristics and therefore maximise the torque curve throughout the rev range.

The performance targets set were achieved also thanks to unrestricted intake and exhaust ducts for optimum gas flow efficiency and the high compression ratio (11.3:1). The painstaking care taken over optimising internal fluid dynamics and combustion efficiency has ensured a high specific power output despite conforming to the latest Euro 4 and LEV2 emissions standards. Engine management is via two electronic Bosch Motronic ME7 control units with twin motorised throttles, single coils and active anti-knocking control throughout the entire rev range.

Transmission and E-DIFF – the electronic differential

Transmission and F1 gearbox: The F430 features a new cast aluminium transmission casing that houses the gearbox in unit with the electronic differential and bevel type final drive, as well as the engine oil tank. The 6-speed gearbox incorporates multicone synchronizers, while both the 6th gear and the final drive have been lengthened to make the most of the greater power and torque of the new engine.

The F430 is available with either the classic Ferrari open-gate manual gearbox or with the F1 paddle shift that Ferrari has continuously developed and refined over recent years for its road-going berlinettas. Thanks to that ongoing development, Ferrari’s F1 gearbox for the F430 is state of the art, introducing a number of important modifications: thanks to inputs from the engineers on the Gestione Sportiva racing side, the F1 gearbox management incorporates a new control strategy which further perfects gearchange speed and smoothness under hard use. Changing gear takes just 150 milliseconds, as measured by the ‘hole’ in acceleration during the change. As well as increasing the speed of changes during hard driving, the new software improves smoothness in the fully automatic mode (actuated by a button on the central tunnel), making the F430 a true all-rounder.

At the opposite extreme, the F430’s LAUNCH CONTROL (not available in North America) gives maximum performance away from a standing start with suitable road conditions (for example, on the track). Gearchange strategies have been fully integrated into all the car’s other control systems and are modified by the settings selected by the steering wheelmounted manettino. The shift paddles are fixed to the steering column in tried and tested Ferrari tradition (right-hand paddle to change UP and the left to change DOWN) but reverse is now selected by a button on the central tunnel for greater ease of use.

E-DIFF – the electronic differential: One of the technical features that sets the F430 apart is the E-Diff or electronic differential. This solution has been used for years in F1 single-seaters and has been continuously developed and refined, effectively transferring massive torque levels to the track under extremely high cornering g-forces.

The E-Diff is now standard equipment on the F430 – the first time that a production car has been equipped with such a sophisticated system for high-performance roadholding. On the track, the E-Diff guarantees maximum grip out of bends, eliminating wheel spin. On the road it is a formidable technological refinement that improves roadholding. This system is available both on the F1-paddle shift version as well as on the manual gearbox model and consists of three main subsystems:

  • a high-pressure hydraulic system, shared with the F1 gearbox (if present);
  • a control system consisting of valve, sensors and electronic control unit;
  • a mechanical unit housed in the left side of the gearbox.

Torque is continuously distributed between the wheels via two sets of friction discs (one for each driveshaft) controlled by a hydraulic actuator. The amount of torque actually transmitted to the driven wheels depends on driving conditions (accelerator pedal angle, steering angle, yaw acceleration, individual wheel rotation speed) and brings considerable advantages in terms of performance, direction stability, active safety and handling feedback. Again, F1 racing was a vital testbench that enabled Ferrari’s engineers to develop a highly sophisticated system that perfectly matches the requirements of a road car designed to reach over 315 km/h and generate considerable cornering forces.

The electronic differential actively helps reduce Fiorano lap times by 3 seconds compared to the 360 Modena. For the driver, the E-Diff increases handling balance and grip (which noticeably improves acceleration), improves roadholding on the limit and also guarantees even better steering feel.

The manettino and vehicle set-up.

Just like in Formula 1, the F430 driver can change various areas of the set-up of his car using a single selector set on the steering wheel. The manettino, as it is called by Scuderia Ferrari drivers, is a commutator switch that has been adopted directly from racing, where the driver’s total commitment to driving requires maximum efficiency and speed in controlling the car’s various functions. This switch quickly and simply controls the electronics governing suspension settings, the CST stability and traction control, E-Diff and the change speed of the F1 transmission, as well as the integration between each of these individual functions.

The manettino is set on the steering wheel and is an example of the rationalisation studies that went into positioning all the controls inside the car. The manettino enables car settings to be changed to suit the personal preferences of the driver, road surface conditions and available grip. The settings available to the driver have been concentrated in five different strategies. These, in ascending order according the level of performance, are:

ICE: performance is significantly restricted (maximum intervention by the stability and traction control) for maximum stability – indispensable for driving in very slippery conditions (snow or ice). The car reacts smoothly to driving inputs. The automatic gear-changing mode is selected which prevents gear changes at high revs and reduces the possibility of the rear wheels locking up on down changes, even on ice.

LOW GRIP: this position ensures stability both on dry and wet surfaces. It is therefore recommended for surfaces with poor grip (rain), gritty roads or particularly broken or undulating blacktop. In this configuration, unlike ICE, the driver can still use the F1 paddle shift. The adaptive suspension setting is optimised to provide a very comfortable ride without impeding the handling balance, and the stability and traction control remains in the ICE configuration.

SPORT: this is the standard setting that strikes the best balance between stability and performance. Ideal for the open road, this position provides an optimum compromise for maximum performance in safety. Compared to the previous settings, SPORT adopts a more sporting configuration for the adaptive suspension to maximise performance, handling and stability at high speeds. The CST also goes up a level, giving the driver greater freedom, without excessively reigning in the engine.

RACE: this setting must be used only on the race track. Gear changing is even faster to minimise gear shifting times. CST intervention is reduced to a minimum (the engine management only cuts the engine when absolutely necessary).

CST: activates or deactivates the stability and traction control. With the manettino set to off, the driver has full control over the car’s reactions. The only driver aids that remain active are those that cannot be overridden such as ABS and EBD (electronic brake distribution). With the CST deactivated, the electronic differential has a specific calibration which exalts the car’s incredible levels of handling and roadholding when free of stability controls. Gear shift speeds and damper settings are the same as in RACE.

Over and above the significant technological breakthrough that the manettino represents, the approach to the new F430 underlines the importance given to exploiting the potential of the vehicle while maintaining ease of use under all conditions without jeopardising safety and stability.

This has led to a new way of conceiving the car, which is not only based on the use of new technical features (eg. electronic differential, stability and traction control, and adaptive damping) but also on the improvement of Ferrari’s tried and tested technologies (F1 gearbox, advanced engine control) and the optimisation of their integration.

The adoption of stability and traction control (CST) together with the electronic differential has made the car even more stable, easier and safer to drive without affecting its handling and the excellent feedback the chassis gives the driver. The system in fact ensures maximum safety in all driving conditions (from extreme track use to town driving) and on all road surfaces (rain or dry, or even ice). The CST intervenes in a smooth, unobtrusive way only as and when needed, without taking the driver’s mind off what he or she is doing.

The F430 features Ferrari’s uncompromising forged aluminium, double unequal-length wishbone suspension set-up front and rear with antidive and antisquat geometries. The F430 also introduces new-generation software for managing the car’s adaptive suspension to provide the perfect balance between handling and comfort.

Two sensors are mounted on the lower front wishbones to read suspension travel, two on the upper shock absorber mounting points to measure body movement, one on a rear shock absorber mounting point to measure roll and yaw, and a last sensor on the steering column to measure steering angle. The control logic adjusts the shock absorbers’ damping characteristics within a certain range based on the settings selected by the driver using the manettino on the steering wheel.

The wheels are fitted with 19” rims with 225/35 tyres at the front and 285/35 at the rear. There is also the option of run-flat tyres combined with electronic pressure control. When flat, these tyres can be driven for 120 kilometres at a maximum speed of 80 km/h.

The power steering has a servo that adjusts the degree of assistance on the basis of engine speed. The ratio is very direct at 60 mm/turn and the turning circle is around 11 metres.

The braking system of the F430 consists of powerful, all-round vented and cross-drilled cast-iron discs (330×32) with four-pot callipers and is integrated with all the car’s electronic control systems (ABS, CST, EBD). Working in close collaboration with Brembo, Ferrari’s engineers have developed a new cast-iron alloy for the discs which includes molybdenum for better energy/heat dissipation. This new alloy provides significantly improved braking performance without increasing the size (and therefore the weight) of the discs. The overall heat-energy index for the F430 under braking from 300 km/h is one of the lowest among high performance cars with cast-iron systems.

An outstanding alternative is the option of specifying the latest generation system based on carbon-ceramic technology that Ferrari developed for its F1 single-seaters. This technology has already been successfully employed on its road cars, starting with the Enzo Ferrari. Different diameter carbon-ceramic discs are mounted front and rear: 360×34 mm with 6-pot callipers at the front, and 350×34 mm with 4-pot callipers at the rear.

The diameters of the hydraulic pistons are differentiated to distribute the pressure exerted on the discs and optimise performance. Pedal travel is constant even under repeated braking, and fade has been eliminated even under hard track use. The adoption of carbon-ceramic discs brings with it a significant increase in longevity the new brakes can in fact easily cover 350 laps at racing speeds on the Fiorano track.

Chassis Technology and Aerodynamics

State-of-the-art chassis technology: The chassis of the F430 fully exploits aluminium construction technology. Just like the 360 Modena, the first Ferrari berlinetta built entirely in aluminium, the F430 chassis is constructed at the Scaglietti facility in Modena in collaboration with the American company, Alcoa. The choice of aluminium and the design methods used have enabled two main objectives to be achieved: considerable structural stiffness and excellent driver and passenger protection with minimal weight.

The spaceframe chassis consists of a mix of aluminium extrusions, panelling cast nodes and has been completely revised using finite element analysis to further reinforce key areas. Chassis rigidity, which is indispensable for optimal handling, has been increased by 20% in terms of torsion and by 8% in terms of flexure. Just like with a F1 monocoque, the increased structural rigidity means that only the suspension absorbs asperities from the road surface.

This in turn means that there is no deformation of the chassis to interfer with the car’s road-holding in cornering, braking or under acceleration. The improvements to the chassis have also brought the car’s passive safety features up to excellent standards. A minimal increase in overall chassis weight of 10% has enabled Ferrari’s engineers to increase the resistance to front-end impact by 37% (in compliance with US standard 301) and to rear-end impact by an astonishing 105%.

To achieve such high standards, particular care was taken over the chassis design in the all-vital crumple zones, integrating the design of the various elements with the type of aluminium used. The central part of the chassis does not absorb energy, but is rigid enough to resist intrusion and roll over.

Front and rear armature increases crash resistance, while the mountings of the side impact bars have been strengthened and reinforced so as to transfer energy throughout the chassis away from the area of impact. Similarly, the areas around the A-post and B-post and inner wheelarches have been reinforced.

The floor of the car is in a new aeronautical alloy which sees use for the first time in a chassis. This alloy (7075 T6), is extremely resistant and its extremely light weight provides further advantages. The door structure, the chassis reinforcements, the positioning of the collapsible arm rest and a more enveloping seat shape provide excellent protection. Scores in side impact tests were so good that side airbags were deemed unnecessary.

Improved aerodynamics: Traditionally, Ferrari has clothed its mechanical package in forms that are dictated by the need for maximum aerodynamic efficiency. In the case of the F430, this principle has been developed to the extreme, employing exactly the same engineering approach to computer development models and wind tunnel testing as used by the F1 team. In this way, Ferrari’s engineers have been able to modulate the air flow both around the car, as well as under it, to perfection.

The result is a highly efficient configuration that channels air flow for maximum downforce and thus grip. Similarly air is channelled to the engine to both increase power as well as optimise cooling of transmission and brakes even under the heaviest use. Perfecting the F430’s aerodynamics has brought about a 50% increase in downforce compared to the 360 Modena, thus increasing high-speed stability and the car’s active safety. At 200 km/h, that figure equates to 45 kg more downforce than the 360 Modena and this becomes 85 kg at 300 km/h, amounting to a total of 280 kg.

The significant progress made in the car’s aerodynamics is also reflected in the improvement of the ratio between the coefficient of downforce (Cl) and the drag coefficient (Cd) with a 40% improvement over the 360 Modena. This excellent result was in part achieved by including a new spoiler at the bottom of the front bumper where it cleaves ‘clean’ air, i.e. that still undisturbed by the turbulence generated around the body of the vehicle. Lengthy development of the shape and the angle of attack of the spoiler resulted in an impressive increase in downforce over the front axle – up to 130 kg – which contributes in no uncertain manner to longitudinal vehicle stability and steering precision.

The nolder on the trailing edge of the engine cover works in conjunction with the new diffuser between the rear wheels. The latter features similar fences (deflectors) to those used on Ferrari’s single-seaters, and increases the speed of air flow under the tail of the car creating an area of depression and ground effect that pulls the car down. In this conformation, the underbody actively helps increase downforce to a maximum of 150 kg over the rear axle.

The resulting combination of stability, road holding and traction give the driver impressive feedback when accelerating out of a bend, and breakaway characteristics on the limit are even more progressive and controlled even at high speeds. Aerodynamic development also had a part in extracting the maximum performance from the new 4.3-litre V8. The two intakes for the engine are positioned over the driven wheels in an area of high flow pressure, thus guaranteeing a greater volume of air to the intake manifold.

At high speeds, in fact, ram-effect induction accounts for 1% of the engine’s maximum power (490 hp). There is a new specific cooling system that makes the most of the new air intakes at the front and the flow over the radiators positioned ahead of the wheels. Hot air from the radiators escapes through vents on the sides of the front bumpers in an area of vacuum that maximises the extraction effect. The engine compartment is cooled by air from two intakes set into the front of the rear wheelarches.

The air is channelled and distributed to critical areas with a high thermal load to provide optimum cooling even under hard use. The brakes benefit from a greater air flow thanks to larger intakes and bigger diameter ducting. The new wheel design also helps maximise the expulsion of hot air from the brake discs to match their increased performance

 

 

Scroll to Top